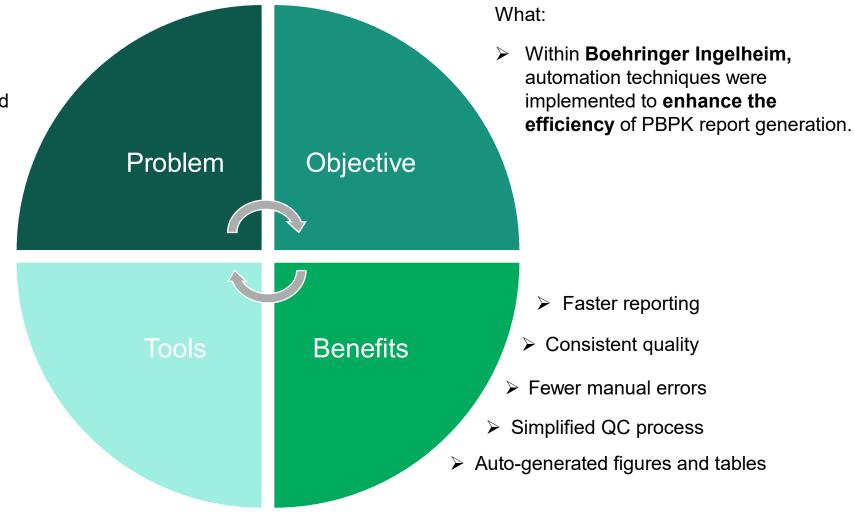


Tools and workflows for automated reporting of PBPK modeling with OSP

Felix Mil (ESQlabs GmbH)

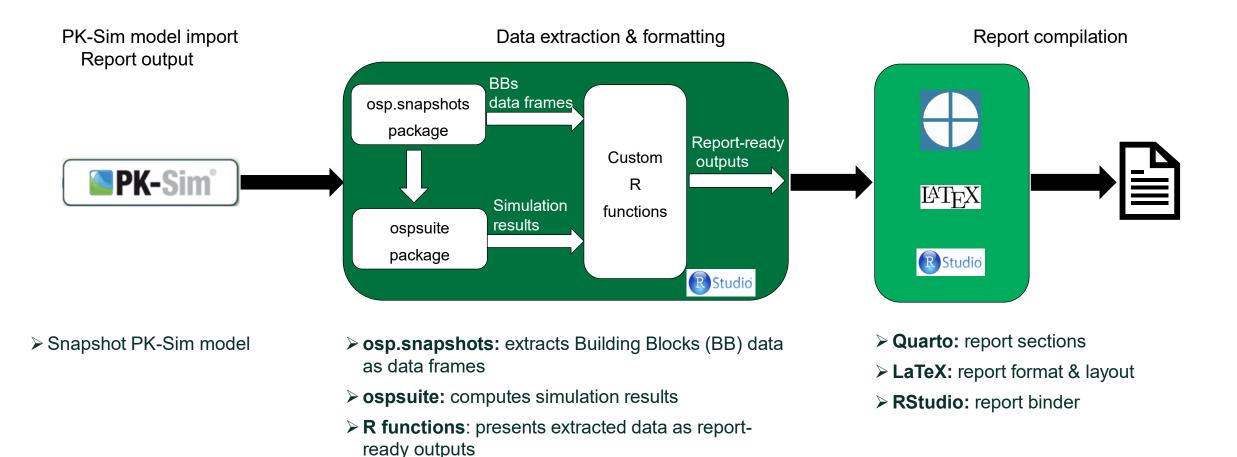
Ghazal Montaseri (Boehringer Ingelheim Pharma GmbH & Co. KG)

September 30, 2025 | OSP Community Conference | Paris

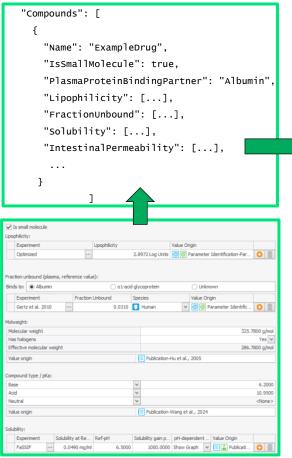

PBPK Automated Reporting: Why, what and how

Why:

- Reporting PBPK analysis results is typically done manually by copying/inserting relevant tables and figures into a Word document or a LaTeX template.
- This process is inefficient, timeconsuming, and prone to errors.

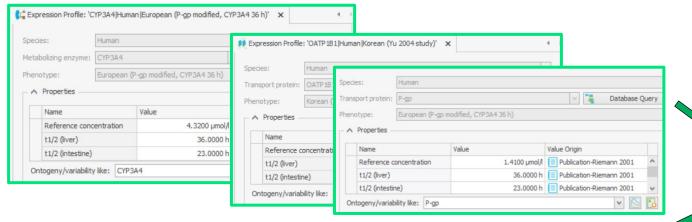

How:

- Rstudio & OSPS R packages
 - osp.snapshots package
 - ospsuite package


Automated PK-Sim®-Related Reporting Workflow at Boehringer Ingelheim

osp.snapshots Package: from Compounds BB Input to Output

Input: snapshot data/nested object

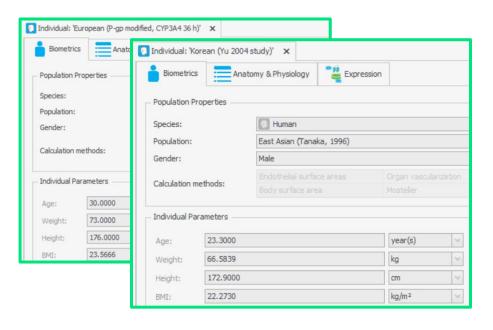


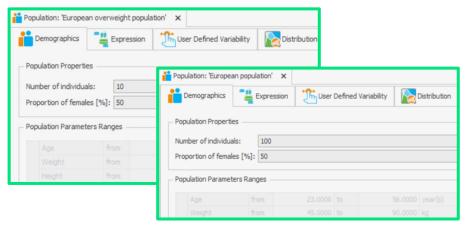
intermediate: osp.snapshots data frame

compound	category	type	parameter	value	unit	data_source	source	~	
ExampleDrug	physicochemical_property	lipophilicity	Optimized	2.8972038771	Log Units	NA	Parameter optim	nization	Output:
ExampleDrug	physicochemical_property	fraction_unbound	Gertz et al. 2010	0.031	NA	NA	Parameter optim	nization	Output.
ExampleDrug	physicochemical_property	molecular_weight	NA	325.78	g/mol	NA	Hu et al., 2005		customized table
ExampleDrug	physicochemical_property	halogens	Cl	1	NA	NA	Hu et al., 2005		
ExampleDrug	physicochemical_property	halogens	F	1	NA	NA	Hu et al., 2005		
Example Orug	physicochemical_property	pKa	base	6.2 Parameter			Value	Unit	Source
ug	physicochemical_property	рКа	acid	10 Lipophilicit	TV.		2.897	Log Unit	s Parameter o imization
ExampleDrug	physicochemical_property	solubility	pH 6.5	0.0 Fu-plasma	ıy		0.031	Log Omi	Parameter optimization
ExampleDrug	physicochemical_property	intestinal_permeability	Optimized	0.0 Molecular V	Weight		325.8	g/mol	Hu et al., 2005
ExampleDrug	protein_binding_partners	SpecificBinding	koff, GABRG2	Halogens, C	•		1	g/III01 -	Hu et al., 2005
ExampleDrug	protein_binding_partners	SpecificBinding	Kd, GABRG2	1.8 Halogens, H			1	_	Hu et al., 2005
ExampleDrug	metabolizing_enzymes	MetabolizationLiverMicrosomes_MM	Km, CYP3A4	4					·
ExampleDrug	metabolizing_enzymes	MetabolizationLiverMicrosomes_MM	kcat, CYP3A4	pKa, base			6.2	-	Wang et al., 2024
ExampleDrug	metabolizing_enzymes	MetabolizationLiverMicrosomes_MM	Km, UGT1A4	pKa, acid	II 6 5		10.95	- / T	Wang et al., 2024
ExampleDrug	metabolizing_enzymes	MetabolizationLiverMicrosomes_MM	kcat, UGT1A4	Solubility, 1			0.049	mg/mL	mann et al., 2005
ExampleDrug	renal_clearance	GlomerularFiltration	GFR fraction	Intestinal tr		r	1.555e-04	cm/min	Parameter optimization
				koff, GABI			1	1/min	Parameter optimization
				Kd, GABR	G2		1.8	nmol/L	Calculated
				Km, CYP3.	A4		4	μmol/L	Zwald et al., 2001
				kcat, CYP3	A4		8.761	1/min	Parameter optimization
				Km, UGT1	A4		37.8	μmol/L	Zwald et al., 2001
				kcat, UGT1	A4		4.759	1/min	Zwald et al., 2001
				GFR fraction	n		0.6401	-	Parameter optimization

Automated Table of Expression Profiles BB

Table of expression profiles parameters


Molecule	Phenotype	Parameter	Value	Unit	Source			
Metabolizing Enzymes								
AADAC	European (P-gp modified, CYP3A4 36 h)	Reference concentration	1	μmol/L	Assumed			
	European (P-gp modified, CYP3A4 36 h)	t1/2 (liver)	36	h	Berg et al., 2004			
	European (P-gp modified, CYP3A4 36 h)	t1/2 (intestine)	23	h	Berg et al., 2004			
	Korean (Yu 2004 study)	Reference concentration	1	μmol/L	PK-Sim default			
	Korean (Yu 2004 study)	t1/2 (liver)	36	h	Hu et al., 2018			
	Korean (Yu 2004 study)	t1/2 (intestine)	23	h	Hu et al., 2018			
CYP3A4	European (P-gp modified, CYP3A4 36 h)	Reference concentration	4.32	$\mu mol/L$	Utkin 2001			
	European (P-gp modified, CYP3A4 36 h)	t1/2 (liver)	36	h	Utkin 2001			
	European (P-gp modified, CYP3A4 36 h)	t1/2 (intestine)	23	h	Utkin 2001			
	Korean (Yu 2004 study)	Reference concentration	3.63	$\mu mol/L$	Parameter optimization			
	Korean (Yu 2004 study)	t1/2 (liver)	36	h	Assumed			
	Korean (Yu 2004 study)	t1/2 (intestine)	23	h	Assumed			


Table of proteins, phenotypes, assays, and ontogeny

Molecule	Phenotype	Assay	Ontogeny/Variability+					
Metabolizing Enzymes								
AADAC	European (P-gp modified, CYP3A4 36 h)	EST	No					
AADAC	Korean (Yu 2004 study)	EST	No					
CYP3A4	European (P-gp modified, CYP3A4 36 h)	RT-PCR	Yes					
CYP3A4	Korean (Yu 2004 study)	RT-PCR	Yes					
UGT1A4	European (P-gp modified, CYP3A4 36 h)	Array	Yes					
Protein Bin	Protein Binding Partners							
ATP1A2	European (P-gp modified, CYP3A4 36 h)	EST	No					
ATP1A2	Korean (Yu 2004 study)	RT-PCR	No					
GABRG2	European (P-gp modified, CYP3A4 36 h)	RT-PCR	No					
GABRG2	Korean (Yu 2004 study)	RT-PCR	No					
Transporter	Transporters							
OATP1B1	European (P-gp modified, CYP3A4 36 h)	Array	No					
OATP1B1	Korean (Yu 2004 study)	RT-PCR	No					
P-gp	European (P-gp modified, CYP3A4 36 h)	Array	Yes					

Automated Table of Individuals and Populations BB

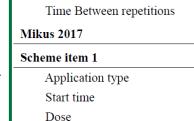
Individual name	Age [year(s)]	Weight [kg]	Height [cm]	BMI [kg/m²]	Gender	Database	Expression*
European (P-gp modified, CYP3A4 36 h)	30	73.0	176	23.6	Male	European	CYP3A4/European (P-gp modified, CYP3A4 36 h), P-gp/European (P-gp modified, CYP3A4 36 h)
Korean (Yu 2004 study)	23.3	66.9	173	22.4	Male	East Asian	CYP3A4/Korean (Yu 2004 study), AADAC/Korean (Yu 2004 study), OATP1B1/Korean (Yu 2004 study), GABRG2/Korean (Yu 2004 study)

Table of population characteristics

Population name	Age [year(s)]	Weight [kg]	Height [cm]	BMI [kg/m²]	Number of individuals	Proportion of females [%]	Based on individual
European overweight population	69.0 [19.7%] 70.2 [13.8] 54.5, 90.3 45-98	80.1 [17.6%] 81.1 [14.2] 70.2, 107 70-140	16.2 [5.39%] 16.2 [0.871] 15.2, 17.3 150-180	30.7 [19.4%] 31.2 [6.06] 24.4, 40.7 23.7-44.3	10	50	European (P-gp modified, CYP3A 36 h)
European population	38.4 [24.6%] 39.7 [9.76] 23.9, 53.8 23-56	67.8 [15.7%] 68.7 [10.8] 52.7, 87.6 45-90	168 [7.25%] 168 [12.2] 153, 189 133-198	24.1 [12.4%] 24.3 [3.00] 20.9, 29.3 18.9-39.9	100	50	European (P-gp modified, CYP3A 36 h)

The second line for each population characteristics showed mean [standard deviation]

The third line for each population characteristics showed 5th percentile, 95th percentile


The fourth line for each population characteristics showed minimum-maximum

Automated Table of Other BB

Parameter	Value	Unit	Source
Tablet (Lint80)			
Dissolution time (80% dissolved)	240	min	Hu et al., 2005
Lag time	12	min	Hu et al., 2005
Use as suspension	yes	-	Hu et al., 2005
Tablet (Weibull)			
Dissolution time (50% dissolved)	0.0107	min	Parameter optimization
Lag time	0	min	Assumed
Dissolution shape	4.38	-	Parameter optimization
Use as suspension	yes	-	Wang et al., 2022

Parameter	Name/Value [unit]
iv 0.001 mg (5 min)	
Scheme item 1	
Application type	Intravenous
Start time	0 [h]
Dose	0.001 [mg]
Number of repetitions	1 [-]
Time Between repetitions	0 [h]
Mikus 2017	
Scheme item 1	
Application type	Intravenous
Start time	6 [h]
Dose	2 [mg]
Number of repetitions	1 [-]
Time Between repetitions	0 [h]
Scheme item 2	
Application type	Oral
Formulation	Tablet (Weibul)
Start time	0 [h]
Dose	4 [mg]
Number of repetitions	1 [-]
Time Between repetitions	0 [h]

BB Data Presentation as Text Blocks

Metabolizing Enzymes kinetics

In the final PBPK model:

- ExampleDrug:
 - is metabolized by CYP3A4 via *in-vitro* metabolic rate in the presence of liver microsomes- Michaelis-Menten process with parameters Km = 4 μmol/L and kcat = 8.761 1/min.
 - is metabolized by UGT1A4 via *in-vitro* metabolic rate in the presence of liver microsomes- Michaelis-Menten process with parameters $Km = 37.8 \mu mol/L$ and kcat = 4.759 1/min.

Renal/hepatic/biliary kinetics

- ExampleDrug:
- is cleared renally via glomerular filtration process with parameter GFR fraction = 0.6401.

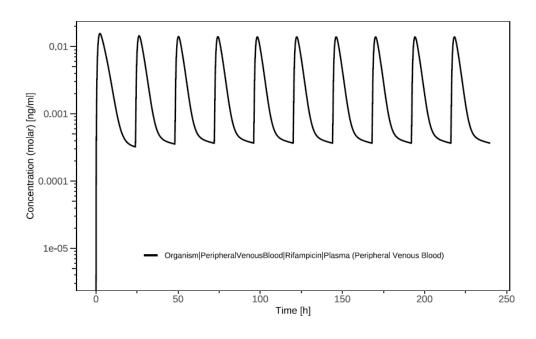
Events BB

In the final PBPK model, 3 events were created as listed below:

- · Gallbladder emptying enabled.
- High-fat breakfast (from High-fat breakfast template) with Meal energy content 800 kcaL (other parameter(s) is(are) as default values in Table 15).
- Urinary bladder emptying with fraction 0.5 enabled.

Summary

- This work is part of the Boehringer Ingelheim PBPK Automated Report Generator Project, which aims to facilitate and accelerate PK-Sim®-related reporting.
- The OSP suite R packages serve as a bridge between PK-Sim models and automated reporting workflows.
- osp.snapshots R package:
 - Extracts data from PK-Sim BBs and converts them into data frames
 - Enables simulation computation (via ospsuite R) and generates simulation plots (teaser in the next slide)



What's next? Generating simulation plots

Step 1: running simulations from snapshots + storing the results for faster loading

```
simulations_results <- get_simulations_results(</pre>
                            snapshot = snapshot,
                            output_dir =
                            here::here("path/to/simulationResults"),
                            load results = TRUE
"Simulations": [
      "Name": "simulation1",
      "Model": "4Comp"
                                                        ExampleDrug-simulation1.pkml
      "ObservedData": [...],
      "Solver": {...},
                                                     ExampleDrug-simulation1-Results.csv
      "OutputSchema": [...],
      "Parameters": [...],
                                                      ExampleDrug-simulation2.pkml
      "OutputSelections": [...],
      "OutputMappings": [...],
                                                     ExampleDrug-simulation2-Results.csv
      "Individual": "...",
      "Compounds": [...],
      "Events": [...],
      "ObserverSets": [...],
      . . .
```

Step 2: plotting time profiles

Acknowledgement

- > Boehringer Ingelheim:
 - Ibrahim Ince
 - PBPK/QSP modeling team members
 - Steve Choy
 - Hugo Maas
 - Jan-Georg Wojtyniak
- ESQlabs Software Team & others
- OSP community

Disclaimer

© 2025 Boehringer Ingelheim International GmbH. All rights reserved.

This presentation and its contents are property of Boehringer Ingelheim and are, inter alia, protected by copyright law. Complete or partial passing on to third parties as well as copying, reproduction, publication or any other use by third parties is not permitted.

